

Fourth Semester B.E. Degree Examination, June/July 2015 Transformers and Induction Machines

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Describe the operation of a single-phase transformer, explaining clearly the functions of the different parts. (06 Marks)
 - b. Explain the operation of transformer under load condition and hence develop the phasor diagram of a single phase transformer under load condition. (08 Marks)
 - c. A 125 kVA transformer having primary voltage of 2000V at 50Hz has 182 primary and 40 secondary turns. Neglecting losses, calculate: i) full load primary and secondary current; ii) no load secondary induced e.m.f. and iii) the maximum flux in the core. (06 Marks)
- a. Develop the exact equivalent circuit of a 1-phase transformer. From this derive the approximate and simplified equivalent circuits of the transformer. State the various assumptions made.

 (08 Marks)
 - b. Derive the condition for maximum efficiency.

(04 Marks)

c. A 2300/230 V, 500 kVA, 50 Hz distribution transformer has core loss of 1600 W at rated voltage and copper loss 7.5 kW at full load. During the day it is loaded as follows:

% load	0%	20%	50%	80%	100%	125%
p.f.	-	0.7 lag	0.8 lag	0.9 lag]	0.85 lag
Hours	2	4	4	5	7	2

Determine the all day efficiency of the transformer.

(08 Marks)

- 3 a. Derive an expression for the saving of copper of autotransformer as compared to an equivalent two-winding transformer. (06 Marks)
 - b. With neat sketch, explain working of constant voltage transformer. (06 Marks)
 - c. Two single phase transformers share a load of 400 kVA at power factor of 0.8 lag. Their equivalent impedances referred to secondary winding are $(1 + j2.5) \Omega$ and $(1.5 + j3) \Omega$ respectively. Calculate the load shared by each transformer. (08 Marks)
- 4 a. Draw the Scott connection of transformers and mark the terminals and turn ratio. What are the applications of Scott connection? (08 Marks)
 - b. Discuss the essential and desirable conditions to be fulfilled for operating two three phase transformers in parallel. (04 Marks)
 - c. A 400 kVA load at 0.7 pf lagging is supplied by three single phase transformers connected in Δ Δ . Each of Δ Δ transformers is rated at 200 kVA, 2300/230 V. If one defective transformer is removed from service, calculate for V V connection:
 - i) The kVA load carried by each transformer.
 - ii) Percent rated load carried by each transformer.
 - iii) Total kVA ratings of the transformer bank in V V.
 - iv) Ratio of V V bank to $\Delta \Delta$ bank transformer ratings.

(08 Marks)

PART - B

- 5 a. Draw and explain the complete torque-speed characteristic of three phase induction machine for all ranges of speed. (06 Marks)
 - b. Explain the concept of rotating magnetic field in 3-phase induction motor. (06 Marks)
 - c. A 746 kW, 3-phase, 50Hz, 16-pole induction motor has a rotor impedance ci (0.02 + j0.15) Ω at stand still. Full load torque is obtained at 360 rpm. Calculate: i) The speed at which maximum torque occurs; ii) The ratio of maximum to full-load torque; iii) The external resistance per phase to be inserted in the rotor circuit to get maximum torque at starting.
 (08 Marks)
- 6 a. Explain cogging and crawling phenomenon in 3-φ induction motor. (06 Marks)
 - b. A 50 kW, 6-pole, 50 Hz, 450 V, 3-φ induction motor furnished the following test figures: No load test: 450 V, 20A, p.f. = 0.15. Blocked rotor test: 200V, 150A, pf = 0.3. The ratio of stator to rotor copper losses on short circuit was 5:4. Draw circle diagram and determine from it.
 - i) Full load current and p.f.
 - ii) Maximum torque and maximum power input.
 - iii) Slip at full load.
 - iv) Efficiency at full load. (14 Marks)
- 7 a. Describe with sketch, the construction of a double cage induction motor. (07 Marks)
 - b. Explain with sketch deep-bar cage motor. (06 Marks)
 - c. Explain theory of self excited induction generator. (07 Marks)
- 8 a. With neat sketch, explain auto transformer starter. (06 Marks)
 - b. With neat diagram, explain shaded pole single phase motor. (06 Marks)
 - c. Briefly explain different speed control methods of 3-\$\phi\$ induction motor. (08 Marks)

* * * * *